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Coupled Microstrip Lines on a
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Abstract —The characterization of guasi-static and frequency-dependent
coupled microstrip lines on a cylindrical substrate is presented in this
article. The dyadic Green’s function is involved for the full-wave analysis,
and the dispersive properties are determined by solving a pair of coupled
Fourier summation equations with the Galerkin method. It is shown that
the transverse current component effect becomes significant when the odd
mode is characterized. Careful numerical treatment reveals the transverse
current behavior when the lines are tightly coupled.

1. INTRODUCTION

N MANY PRACTICAL applications, microstrip anten-

nas and microstrip arrays are conformal to cylindrically
shaped substrates [1]-[6]. This has brought about the need
for developing accurate frequency-dependent models and
computer-aided design tools for microstrip integrated cir-
cuits on curved substrates. In a recent article, the disper-
sive waveguiding properties of an infinitely long, axially
oriented microstrip line were characterized [6]. Therein a
highly accurate algorithm was described for narrow single
microstrip lines; 1.e., only the longitudinal current was
included in the analysis. This paper investigates the trans-
verse current (transverse field) effect on single as well as
coupled microstrip lines. The quasi-static formulation and
numerical results are also presented for comparison with
the low-frequency limit of the dynamic models. It is de-
termined that the odd mode requires appropriate modeling
of the transverse electric field to achieve precise character-
ization of the coupled microstrip lines. A closed-form
formulation is also presented which allows the accurate
computation of Galerkin's matrix elements. The geometry
of interest is shown in Fig. 1. A curvilinear coefficient R is
introduced as the ratio of inner to outer radii, namely
R=a/b. A local geometry is also defined to show the
corresponding dimensions conventionally used for planar
geometries. Throughout the paper, the local dimensions
and the curvilinear coefficient R are used to define the
microstrip line physical characteristics.
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Fig. 1. Coupled microstrip lines on cylindrical substrate. R: curvilinear
coefficient =a /b. W=34,b, s=08b,and h=>b—a.

II. ANALYSIS

The Green’s function approach and the numerical
solution of the pertinent Fourier domain analysis permit
us to treat a variety of problems(by developing the proper
form of charge or current distribution [1}-[12] on single or
coupled microstrip lines. The potential Green’s function is
used for the quasi-static while the dyadic Green’s function
is used for the frequency-dependent formulation. The
quasi-static Green’s function solution is given in the Ap-
pendix. There is an essential difference between the two
formulations in that the quasi-static approach relies on the
radial field dependence, while the electric dyadic Green’s
function solution relies on the substrate surface electric
field and current. Therefore when coupled lines are
considered, the transverse electric field is no longer negli-
gible, since the field strength of the odd mode between the
two lines becomes strong enough to compensate for the
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weak transverse current when the separation of the lines
becomes small. This necessitates the development of a
full-wave analysis. The problem is characterized by
considering a magnetic or electric wall at the center of the
two strips for the even- and odd-mode analyses, respec-
tively. The microstrip line current density generates an
electric field given by

E@)= Y G(m)-dmew(ime) (1)

m= o0

where g(m) denotes the dyadic Green’s function and ~
denotes the Fourier transform of the quantity of interest.
In (1), J(m), E(¢$), and G(m) are defined as

(2)
®3)

Tom) = ,(m) + 2,(m)

E(¢)=1E,($)+ 2E,($)

and

= _ (%(m)ﬁ
S0 gy @

where ¢ stands for transverse while z represents longi-
tudinal components. The exact form of the dyadic Green’s
function has been defined previously [1], [3]-[6].
The coupled equations are now solved for the unknown
current density J. When J is expanded as
N

J(o)= X c,J,(¢)

n=1

G,.(m)iz
G,,(m)zz

)

the substitution of (5) into (1) yields

E(9) = zc,,{ 3 5<m>-g;<m>e:xp(jm¢:»}. ®)

n=1 m=-—o00

When the Galerkin method is applied to (6), a system of
equations is obtained in the form

[V ]=1Z,.1lc.] ™)

where the V,, vector and Z,, matrix elements are defined
by

v, =(E($), J,(¢)) (8)

and

oo j—
Z,m/=< )» G(m)-Jn(m)exp(jm'),Jn/(¢)>. (%)
m=—o0

The notation { ) represents the inner product of the
functions on the strip segment. Furthermore, the inner
product of (9) can be analytically carried out since its
mner product is a conjugate Fourier transform operation.
Thus, (9) is rewritten as

(10)
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When the infinite line is considered, the inner product of
the electric field and current density functions vanishes
because of the complementary relationship. Therefore, the
properties of the above set of equations can be computed
by seeking for the nontrivial solution of the Galerkin
determinant. The basis function set must be chosen in
order to achieve sufficient convergence of the Fourier
summation form as given in (10). The large order behavior
of the dyadic Green’s function is derived as

= B if B, 1%
im G(m) =", = (11)
m= o0 B, 2t B, /miZ
where
Jn 1
B, =—
" Ob 1+Er (123)
Jk,bn 1
B =B =
zt iz kob 1+€r (12b)
and
Jkobn 2e,
= ( - == (120)
2 1+e,

The effective dielectric constant e is defined by (k, /k,)?,
where k, is the wavenumber in the axial direction and 7 is
the free-space characteristic impedance. The choice of
current basis functions is important in achieving conver-
gence. This is especially true for the transverse current
basis function choice. The numerical precision of the
computation depends strongly on the accuracy of each
Galerkin determinant element value. The slow convergence
of the Fourier summation form when the circuit dimensions
are much smaller than the radius of the cylinder has been
pointed out previously [5], [6]. This necessitates the devel-
opment of a closed-form expression in order to avoid the
numerical inaccuracy caused by truncating the tail contri-
bution of the summation. This procedure is also important
to detect the small contribution of the transverse current
since its magnitude is usually 1072 to 10~° relative to the
longitudinal component when the frequency is very low.
Numerical efficiency is also seriously improved when the
closed-form expression is used. It is not necessatily true
that numerical efficiency and accuracy are improved by
using complicated basis sets with a smaller number of
basis functions. Because of the above-mentioned reasoms,
triangular basis functions have been chosen for the trans-
verse current representation, while pulse basis functions
have been used for the longitudinal basis current formula-
tion, as shown in Fig. 2. The Galerkin determinant ele-
ments must be properly normalized to avoid numerical
overflow or underflow when a large number of basis
functions are used. N basis functions are employed for
both the longitudinal and the transverse current expansion
for one line. The basic Fourier transform of the above
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Fig. 2. Current basis functions.

functions is derived as follows:

(a) transverse basis function:
where |¢| < D, /2,

Jio(9) = (1~ 2¢/D,)

D, D,
VASS —)—4—-exp{(- +) jmé,, } sinc? (m ) (13a)

(b) longitudinal basis function: J,;(¢) =1 where j¢| <
D, /2,

J(+")=—Diex {(—,+)jme,, } sinc| — e (13b)
~Zh 271_ p .] ¢ S

where D, and D, are defined as 28, /(N +1) and §, /N,
respectively, and the Fourier transform shifting property is
applied. The relative position of the basis functions is
referenced from the center of the two strips, i.e., ¢ =0, and
the +,— signs indicate the positive and negative position
from the reference plane. The function sinc(x) is defined
as sin(x)/x. The above set of basis functions ensures
convergence of the Fourier summation. Furthermore, the
Galerkin procedure also equalizes the convergence rate of
each matrix element. When even and odd modes are
considered, a magnetic or an electric wall is placed at the
center of the two strips. Therefore we obtain J{9 = (J} —

J)/2 and JO = (J} + J)/2 for the even mode and
J,(,,”) =(J; +J;,)/2 and J(") = (J;}} = J.;)/2 for the odd
mode. The followmg closed-form expressions are presented
for precise and efficient computation of the Fourier sum-
mation.
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Closed-Form Formulation

The dyadic Green’s function components exhibit
the following properties: G, (m)=G,(—m), G, (m)=
G,.(—m), and G, (m)=—G,(~m). Therefore, the
Fourier summation reduces to only positive m. This also
proves that the previously defined currents are properly
chosen, since the choice of even or odd distribution for
both transverse and longitudinal currents makes the cou-
pling matrix element zero.

1) Transverse Matrix Element:

X —z(D )[ (1- p)G,,(O)+B,,(%)4Sn’;,

- _ sin sin
+ Zl {Gtt(m) tht} cos (md)tn’)cos (m¢tn)

m=

-sinc? ( T_D_‘) (14a)

4

where

© 1
Stt =
nwn' Z m

m=1

Sln( ¢,,,)5m(m¢m)sm( f ) (140)

2) Coupling Matrix Element:

_ — D,\(D 4\ 2

X =— X4 =-2j(-1)"| =) =||B.| =] [=]|s=
nn nn ]( ) (477_)( ) IZ(DI) (DZ) nn’

Z {Gtz(m) Btz} Sln( ¢tn) ( ¢zn)

27

_ [V} sin
) mD, mD,
-sinc? e sinc T) (15a)
where
- sin cos
tz _ .
Snn mzzl m3 COS( ¢tn ) SlIl ( ¢zn)

= mD,\ = (mD,
rsin’ | —— Jsin| —= . (15b)

3) Longitudinal Matrix Element:
X2, =2 D\ 1 G,,(0)
7z ___ +
sl 2 e
+ 2 {G.(m)-
m=1

mD
..2 z
22

zZz™nn

7\2
— | B,,S7,
)

COos

B} g (M%)

COSs

ain (M%24)

(16a)

where

& 1 cos
Siim 3 % (m6,) % (m,, s’

z ( mfz) (16b)

and

_ [1: even mode
2= 10: 0dd mode.
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The upper case corresponds to the even while the lower
case corresponds to the odd mode. Clausen’s integral is
applied to construct the summable form of (14b), (15b),
and (16b) as described in [13] and [14]. Once the propa-
gation constant of the system is computed, the charac-
teristic impedance can also be obtained by the variational
expression developed in [6], i.e., '
aT 0
2= £ smrar o)

m=—o0

where V), is the normalized Fourier-transformed voltage
defined between ground and strip as

V=[G (o, m) do. (18)

The total current I, is defined on either side of the strip
for a coupled line and it has been defined for half of the
strip for the single line case. This expression also provides
the power relation using the voltage and current definition
[12]. /

IIIL.

The low-frequency results are shown for the alumina
substrate case in Figs. 3 and 4. The strip width W and the
separation s are defined as bS8, and bd,, respectively,
while the substrate thickness 4 is defined as (b — a). The
effective dielectric constant shows a small variation from
the planar geometry, while the characteristic impedance
shows much stronger dependence on the substrate curva-
ture parameter. The above data have been also simulated
by using the quasi-static formulation, which is provided
in the Appendix. The agreement of both approaches
is better than 0.2 percent where k,b=0.1 is used for
the frequency-dependent model. The frequency-dependent
single microstrip line is simulated for R =0.9 and W/h =
1.0 by taking the numerical limit of 5s/h =0.0. The even
mode is shown in Figs. 5 and 6. The characteristic imped-
ance for the single line defined by (17) must be interpreted
properly. The circled data show the longitudinal current
approximation [6] (the transverse current has been neglect-
ed), while the solid line shows the full-wave current analy-
sis. The transverse current effect can be seen at high
frequencies when the microstrip line is wider. The same
type of behavior has been predicted in [7] and [8). The role
of the transverse current component effect becomes much
clearer when coupled lines are considered.

The next figure shows the low-frequency behavior of
coupled microstrip lines by varying s/h (Fig. 7). Here,
R =0.9 and W/h =1.0 for an alumina substrate. When the
coupled lines are merging to one line, both quasi-static and
frequency-dependent solutions predict the appropriate
asymptotic behavior for the even- and odd-mode cases.
For the even mode, the effective dielectric constant ap-
proaches the single line parameter for a line width of
(2W + 5)/h. This is because the even-mode effective line
widths overlap before the physical line width comes into
contact. The effective dielectric constant in this case tends
to increase until the even mode of the coupled microstrip

NUMERICAL RESULTS
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Fig. 4. Low-frequency odd-mode microstrip line characteristics. €, = 9.6

and s/h=28,b/(h—a)=10.

lines sees the actual separation of the line. Thus, for very
small separation, the electric field underneath the coupled
lines tends to behave as it does for the single line. The
odd-mode field, on the other hand, approaches the small
slot field distribution behavior as the lines get very close.
When the separation becomes extremely small, the effec-
tive dielectric constant approaches the value (¢, +1)/2, in
which case the slot field is so strong that the field lines
tend to be shared equally in the dielectric and air region.
Here the small dashed line indicates the results for the
longitudinal current approximation. The longitudinal cur-
rent approximation for the even mode shows no variation
from the full-wave analysis. However the longitudinal cur-
rent approximation for the odd mode shows a strong
discrepancy from both the quasi-static and the full-wave
analysis. When the gap is small, the transverse electric field
must be taken properly into account in the formulation by
using the full-wave analysis. Fig. 8 reveals the odd-mode



1396
Ceff
9.0 4
p»,,/”/o'
8.0 J
AL W/h = 1.0
6,861
Quasi-static value
6.425
6.0 7]
5.0 T T T T T
0.0 1.0 2.0 3.0 4.0 5.0
k b
o
o Longitudinal approxiwation.
Full wave analysis.
Fig. 5. Frequency-dependent effective dielectric constant of single

microstrip line on cylindrical substrate. R=a/b=0.9, ¢,=9.6, and
s/h=380b/(b—a)=00.
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Fig. 6. Frequency-dependent characteristic impedance of singie micro-
strip line on cylindrical substrate R=a¢/b=0.9, ¢,=96, and s/h =
8,b/(b—a)=00.

current distribution when both longitudinal and transverse
currents are included for various line separations. The
cylindrical geometry and substrate material are considered
to be the same as in Fig. 7. There are two different
physical phenomena taking place for even and odd trans-
verse current distributions. When the lines are tightly
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Fig. 8. Odd-mode current behavior as a function of line separation.
R=09,¢,=96, W/h=10,and kyb = 0.1. Number of base functions:
longitudinal current - 20; transverse current - 20.

TABLE I
NUMERICAL COMPARISON OF QUASI-STATIC, FULL-WAVE, AND
LONGITUDINAL APPROXIMATION

0dd mode
* )
s/h | Quasi-static Full wave Longitudinal
(Appendix 1) {Present theory) approximation

0.2 5.485 5.486 (.02%) 5.598 (2.1X)
31.65 31.67 (.06%) 49.84 (57.%)
1.0 5.722 5.722 (%333 5.774 (.91%)
43.72 43.76 (.09%) 48.44 (11.%)
10.0 6.369 6.372 (.05%) 6.376 (.11%)
50.97 51.01 (.08%) 50.50 (.92%)
Even mode
* . %
s/h Quasi-static Full wave Longitudinal
{Appendix I) {Present theory) approximation

0.2 6.921
66.46

6.926 (.07%)
66.55 (.14%)

6.943 (.32%)
66.46 (*%%%)

R=009,¢ =96, kob=01 (***), and W/h=8,b/(b—a)=10.
*N = 20 for both longitudinal and transverse current.
**N =20 for longitudinal current and N = 0 for transverse current.
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Fig. 9. Frequency-dependent even/odd-mode effective dielectric con-
stant. R=10.9, ¢, =9.6, W/h=1.0,and s/h =1.0.
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Fig. 10. Frequency-dependent even/odd-mode characteristic imped-
ance. R=09, ¢, =9.6, W/h =10, and s/h =1.0.

coupled, the odd-mode transverse electric field component
becomes very strong between the lines, so that the trans-
verse current flow is dominated by this field. On the other
hand, the even-mode transverse current flow is dominated
by the two lines merging together as a one line system
when the separation is small. Consequently, the even-mode
transverse current also shows a behavior similar to that
observed for the odd mode. When the separation gets
wider, the transverse current starts to show an antisymmet-
ric behavior, since there is not enough conpling to affect
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the transverse current component. A numerical compari-
son of these cases is also presented in Table 1.

Finally, the last two figures show the frequency-depen-
dent characteristics of the coupled microstrip lines. Here
we consider R = 0.9, W/h =1.0, and 5 /h =1.0 for alumina.
It can be seen that the longitudinal current approximation
agrees quite well for the even mode. However, the odd
mode shows a significant difference, especially for the
characteristic impedance. ’

TV. CONCLUSIONS

The frequency-dependent characteristics for single and
coupled microstrip lines on a coated cylinder are obtained
with an exact dyadic Green’s function formulation. When
the numerical procedure is carefully developed, all the
physical phenomena are observed and the transverse
electric field and current are found to be extremely
significant, especially for the odd-mode case. The algorithm
for computing the cylindrical substrate geometry Green’s
function is proven to be very accurate and efficient.

APPENDIX

The quasi-static formulation is presented here since the
numerical comparison with the frequency-dependent solu-
tion has relied on this model.

The potential Green’s function for the single-layer
problem can be readily obtained as [6]

1
g(b,9) = 3,—| ~ log(1/R)

2me
o0 cos{m(¢p—¢)}
+2m§1 m{1+e¢,coth(mlog(1/R))} |

The charge distribution is approximated by a set of pulse
basis functions with a subsegment width of D and the
even/odd mode condition is imposed on the problem.
When the Galerkin method is applied, we obtain the
system of equations as [V, ] =[Z, (¢, ] Since the potential
on the strip is constant, ¥, =1, the impedance matrix
element is derived in the form

(A1)

4 8 D21 (1/R)
nn’ weq D p8e, og(l/
mD
o o me) e, it | -
sin sin 2
+ ) (A2)

=, m*{1+¢,coth(mlog(1/R))}

m

with

_ [1: even mode
P=10: 0dd mode.

Here the even mode corresponds to the upper and the odd
mode to the lower case. The closed-form formulation is
obtained by observing that coth(mlog(1/R)) ~1 as R —1.
The same technique is also applied to the frequency-
dependent model. We have determined that when R is
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close to unity, the closed-form formulation requires a
relativély large number of correction terms. This is also
true for the frequency-dependent model since the func-
tional behavior for large order is expected to be the same
as that for the quasi-static case. The convergence rate of
the above summation relies on the value of D. When D is
small, it can be observed that the convergence rate is very
slow, and for the extreme case of D = ( the series diverges.
This is the case of singular solution, when the source is an
impulse source and the system function is white noise.
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