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Coupled Microstrip Lines on a
Cylindrical Substrate

AKIFUMI NAKATANI, STUDENT MEMBER, IEEE, AND

NICOLAOS G. ALEXOPOULOS, FELLOW, IEEE

Abstract — The characterization of quasi-static and freqnency-dependent
coupled microstrip lines on a cylindrical snbstrate is presented in this
article. The dyadic Green’s function is involved for the full-wave analysis,
and the dispersive properties are determined by solving a pair of conpled
Fourier summation eqnations with the Galerkin method. It is shown that
the transverse current component effect becomes significant when the odd
mode is characterized. Careful numerical treatment reveals the transverse

current behavior when the lines are tightly conpled.

I. INTRODUCTION

I N MANY PRACTICAL applications, microstrip anten-

nas and microstrip arrays are conformal to cylindrically

shaped substrates [1]–[6]. This has brought about the need

for developing accurate frequency-dependent models and

computer-aided design tools for microstrip integrated cir-

cuits on curved substrates. In a recent article, the disper-

sive waveguiding properties of an infinitely long, axially

oriented microstrip line were characterized [6]. Therein a

highly accurate algorithm was described for narrow single

microstrip lines; i.e., only the longitudinal current was

included in the analysis. This paper investigates the trans-

verse current (transverse field) effect on single as well as

coupled microstrip lines. The quasi-static formulation and

numerical results are also presented for comparison with

the low-frequency limit of the dynamic models. It is de-

termined that the odd mode requires appropriate modeling

of the transverse electric field to achieve precise character-

ization of the coupled microstrip lines. A closed-form

formulation is also presented which allows the accurate

computation of Galerkin”s matrix elements. The geometry

of interest is shown in Fig. 1. A curvilinear coefficient R is

introduced as the ratio of inner to outer radii, namely

R = a/b. A local geometry is also defined to show the

corresponding dimensions conventionally used for planar

geometries. Throughout the paper, the local dimensions
and the curvilinear coefficient R are used to define the

microstrip line physical characteristics.
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Fig. 1. Coupled microstrip lines on cylindrical substrate. R: curvilinear
coefficient =a/b. W=&, b, s=ti~b,and h= b–a.

II. ANALYSIS

The Green’s function approhch and the numerical

solution of the pertinent Fourier domain analysis permit

us to treat a variety of problems Iby developing the proper

form of charge or current distribution [1]–[12] on single or

coupled microstrip lines. The potential Green’s function is

used for the quasi-static while the dyadic Green’s function
is used for the frequency-dependent formulation. The

quasi-static Green’s function solution is given in the Ap-

pendix. There is an essential difference between the two

formulations in that the quasi-static approach relies on the

radial field dependence, while the electric dyadic Green’s

function solution relies on the substrate surface electric

field and current. Therefore when coupled lines are

considered, the transverse electric field is no longer negli-

gible, since the field strength of the odd mode between the

two lines becomes strong enough to compensate for the
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weak transverse current when the separation of the lines

becomes small. This necessitates the clevelopment of a

full-wave analysis. The problem is characterized by

considering amagnetic or electric wall at the center of the

two strips for the even- and odd-mode analyses, respec-

tively. The microstrip line current density generates an

electric field given by

where ;(m) denotes the dyadic Green’s function and -

denotes the Fourier trans~orm of the quantity of interest.

In (l), ~(m), ~(q$), and ~(m) are defined as

x~)=?t(m)+%(~) (2)

_E(@)=zt(@)+mz(@)l (3)

and

(G,, (m)~
:(m) =

G,z(m)f2

Gz,(m)lf Gz=(m),?2 )

(4)

where t stands for transverse while z represents longi-

tudinal components. The exact form of the dyadic Green’s

function has been defined previously [1], 13]-[6],

The coupled equations are now solved for the unknown— —
current density J. When J is expanded as

~(+) = f C.Z(@) (5)
~=1

the substitution of (5) into (1) yields

When the Galerkin method is applied to (6), a system of

equations is obtained in the form

[~] = [Znn][cn] (7)

where the Vm, vector and Z.., matrix elements are {defined

by .

~=(E(@,~ @)) (8)

and

The notation ( ) represents the inner product of the

fun&ions on the strip segment. Furthermore, the inner

product of (9) can be analytically carried out since its

inner product is a conjugate Fourier transform operation.

Thus, (9) is rewritten as

When the infinite line is considered, the inner product of

the electric field and current density functions vanishes

because of the complementary relationship. Therefore, the

properties of the above set of equations can be computed

by seeking for the nontrivial solution of the Galerkin

determinant. The basis function set must be chosen in

order to achieve sufficient convergence of the Fourier

summation form as given in (10). The large order behavior

of the dyadic Green’s function is derived as

where

B,,=E~
kob 1 + E,

jkzbq 1
B=, =Bz, =——

kob 1 + ~,

(12a)

(12b)

and

()jkobq 2ee~~
BZZ=– —

2
l–—

1+6, “
(12C)

The effective dielectric constant C,ff is defined by (kz/kO)2,

where k, is the wavenumber in the axial direction and q is

the free-space characteristic impedance. The choice of

current basis functions is important in achieving conver-

gence. This is especially true for the transverse current

basis function choice. The numerical precision of the

computation depends strongly on the accuracy of each

Galerkin determinant element value. The slow convergence

of the Fourier summation f orm when the circuit dimensions

are much smaller than the radius of the cylinder has been

pointed out previously [5], [6]. This necessitates the devel-

opment of a closed-form expression in order to avoid the

numerical inaccuracy caused by truncating the tail contri-

bution of the summation. This procedure is also important

to detect the small contribution of the transverse current

since its magnitude is usually 10-3 to 10-c relative to the

longitudinal component when the frequency is very low.

Numerical efficiency is also seriously improved when the

closed-form expression is used. It is not necessarily true

that numerical efficiency and accuracy are improved by

using complicated basis sets with a smaller number of

basis functions. Because of the above-mentioned reasons,

triangular basis functions have been chosen for the trans-

verse current representation, while pi.dse basis functions

have been used for the longitudinal basis current formula-

tion, as shown in Fig. 2. The Galerkin determinant ele-

ments must be properly normalized to avoid numerical

overflow or underflow when a large number of basis

functiom are used. N basis functions are employed for

both the longitudinal and the transverse current expansion

for one line. The basic Fourier transform of the above
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Fig. 2. Current basis functions.

functions is derived as follows:

(a) transverse basis function: .ltO(@) =(l-12rp/D,l)

where l@l<D,/2,

y(+.-)= ~exp{(–,+)jm~~rl.,ln
()

}sinc’ ~ (13a)

(b)longitudinal basis function: .lzO(@)=l where 1+1<

D= /2,

.f(+,-)s ~exp{(– ,+)jm$,,.} sine-zn
()

~ (13b)

where D, and Dz are defified as 28,W/(N + 1) and 6W/N,

respectively, and the Fourier transform shifting property is

applied. The relative position of the basis functions is

referenced from the center of the twc} strips, i.e., + = O, and

the +, – signs indicate the positive and negative position
from the reference plane. The function sine(x) is defined

as sin (x )/x. The above set of basis functions ensures

convergence of the Fourier summation. Furthermore, the

Galerkin procedure also equalizes the convergence rate of

each matrix element. When even and odd modes are

considered, a magnetic or an electric wall is placed at the

center of the two strips. Therefore we obtain J:) = ( JJ –

.lZj )/2 and JJ;J = (.TZJ + .lZj )/2 for the even mode and

.l~~) = ( .J,J + J,; )/2 and J~j) = (J~, – J,; )/2 for the odd
mode. The following closed-form expressions are presented

for precise and efficient computaticm of the Fourier sum-

mation.

Closed-Form Formulation

The dyadic Green’s function components exhibit

the following properties: G,,(m) = G,t( – m), G=,(m)=

G,,( – m), and G,Z(m) = – G,z( – m). Therefore, the

Fourier summation reduces to only positive m. This also

proves that the previously defined currents are properly

chosen, since the choice of even or odd distribution for

both transverse and longitudinal currents makes the cou-

pling matrix element zero.

1} Transverse Matrix Element:

+ ~ {G,,(m)–m%}~s(m%) ~s
~=1

( )]mDt
. sine 4 —

4

‘+tn.

(14a)

where

2) Coupling Matrix Element:

(15a)

where

3) Longitudinal Matrix Element:

( )]mDz
. sin’ —

2

where

(16a)

and

[
1: even mode

p = O: odd mode.
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The upper case corresponds to the even while the lower

case corresponds to the odd mode. .Clausen’s integral is

applied to construct the summable form of (14b), (15 b),

and (16b) as described in [13] and [14]. Once the propa-

gation constant of the system is computed, the charac-

teristic impedance can also be obtained by the variational

expression developed in [6], i.e.,

Z.= ; ;_ ~=(nz)ym~z”(r)’r) (17)
Zm cc

where ~~ is the normalized Fourier-transformed voltage

defined between ground and strip as

(18)

The total current 1, is defined on either side of the strip

for a coupled line and it has been defined for half of the

strip for the single line case. This expression also provides

the power relation using the voltage and current definition

[12].

III. NUMERICAL WSULTS

The low-frequency results are shown for the alumina

substrate case in Figs. 3 and 4. The strip width W and the

separation s are defined as b~w and b8,, respectively,

while the substrate thickness h is defined as [b – a). The

effective dielectric constant shows a smal 1 variation from

the planar geometry, while the characteristic impedance

shows much stronger dependence on the substrate curva-

ture parameter. The above data have been also simulated

by using the quasi-static formulation, which is provided

in the Appendix. The agreement of bloth approaches

is better than 0.2 percent where kOb = 0.1 is used for

the frequency-dependent model. The frequency-dependent

single microstrip line is simulated for R = 0.9 and W/h =

1.0 by taking the numerical limit of s/h = 0.0. Thle even

mode is shown in Figs. 5 and 6. The characteristic impeda-

nce for the single line defined by (17) must be interpreted

properly. The circled data show the longitudinal current

approximation [6] (the transverse current has been neglect-

ed), while the solid line shows the full-wave current analy-

sis. The transverse current effect can be seen at high

frequencies when the tnicrostrip line is wider. The same

type of behavior has been predicted in [7] and [8]. The role

of the transverse current component effect becomes much

clearer when coupIed lines are considered.

The next figure shows the low-frequency behavior of

coupled microstrip lines by varying s/h (Fig. 7). Here,

R = 0.9 and W/h = 1.0 for an alumina substrate. When the

coupled lines are merging to one line, both quasi-static and

frequency-dependent solutions predict the appropriate

asymptotic behavior for the even- and cldd-rnode cases.

For the even mode, the effective dielectric constant ap~

preaches the sin#e line parameter. for a line width of

(2 W + s)/h. This is because the even-mode effective line

widths overlap before the physical line width comes into

contact. The effective dielectric constant in this case tends

to increase until the even mode of the Coulpled rnicrostrip
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Fig. 3. Low-frequency even-mode microstrip line characteristics. c,=
9.6 and s/h = 8,b/(b – a) =1.0.
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Fig. 4. Low-frequency odd-mode microstrip line characteristics. c, = 9.6
and s/h = 8,b/(b – a) =1.0.

lines sees the actual separation of the line. Thus, for very

small separation, the electric field underneath the coupled

lines tends to behave as it does for the single line. The

odd-mode field, on the other hand, approaches the small

slot field distribution behavior as the lines get very close.

When the separation becomes extremely small, the effec-

tive dielectric constant approaches the value (c, + 1)/2, in

which case the slot field is so strong that the field lines

tend to be shared equally in the dielectric and air region.

Here the small dashed line indicates the results for the

longitudinal current approximation. The longitudinal cur-

rent approximation for the even mode shows no variation

from the full-wave analysis. However the longitudinal cur-

rent approximation for the odd mode shows a strong

discrepancy from both the quasi-static and the full-wave

analysis. When the gap is small, the transverse electric field

must be taken properly into account in the formulation by

using the full-wave analysis. Fig. 8 reveals the odd-mode
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current distribution when both longitudinal and transverse

currents are included for various line separations. The

cylindrical geometry and substrate material are considered

to be the same as in Fig. 7. There are two different

physical phenomena taking place for even and odd trans-

verse current distributions. When the lines are tight] y
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Fig. 7. Low-frequency coupled mlcrostrip line properties as a function
of line separation. R = a/b = 0.9, W/!I = c$Wb\(b – a) =1.0, c, = 9.6,
and kob = 0.1.
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TABLE I

NUMERICAL COMPARISON OF QUASI-STATIC, FULL-WAVE, AND
LONGITUDINAL APPROXIMATION

Odd mode

s/h Quasi-static Full wave* Longitudinal*’

(Appendix I ) (Present theory) approximation

0.2 5.485 S.486 (.02%) 5.598 (2.1%)

31.65 31.67 (.06%) 49.64 (57.%)

1.0 5.722 5.722 (****) 5.774 (.91%)

43.12 43.76 (.09%) 48.44 (II.%)

10.0 6.369 6.372 (.05%) 8.376 (.11%)

50.97 5i.01 (.06%) 50.50 (.92%)

Even ●ode

slh Quasi-static Full wave* Longitudinal**

(Appendix I) (Present theory) approximate ion

I 0.2 6.921 6.926 (.07%) 6.943 (.32%)

66.46 66.55 (.14%) 66.48 (****) I

R = 0.9, (, = 9.6, kob== 0.1 (*,**), and W/h = 8~b/(b– a) =1.0,
“N= 20 for both Iongitudmal and transverse current.
* * N = zo for longitudinal current and N = O for transverse current.
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coupled, the odd-mode transverse electric field component

becomes very strong between the lines, so that the trans-

verse current flow is dominated by this field. On the other

hand, the even-mode transverse current flow is dominated

by the two lines merging together as a one line system
when the separation is small. Consequently., the even-mode

transverse current also shows a behavior similar to that

observed for the odd mode. When the separation gets

wider, the transverse current starts to show an antisymmet-

ric behavior, since there is not enough coupling to affect

the trWMVerSe current component. A numerical compari-

son of these cases is also presented in Table I.

Finally, the. last two figures show the frequency-depen-

dent characteristics of the coupled microstrip lines. Here

we consider R Y 0.9, W/h =1.0, and s/h =1.0 for alumina.

It can be seen that the longitudinal current approximation

agrees quite well for the even mode. However, the odd

mode shows a significant difference, especially for the

characteristic impedance.
—.

IV. CONCLUSIONS

The frequency-dependent characteristics for single and

coupled microstrip lines on a coated cylinder are obtained

with an exact dyadic Green’s function formulation. When

the numerical procedure is carefully developed, all the

physical phenomena are observed and the transverse

electric field and current are found to be extremely

significant, especially for the odd-mode case. The algorithm

for computing the cylindrical substrate geometry Green’s

function is proven to be very accurate and efficient.

APPENDIX

The quasi-static formulation is presented here since the

numerical comparison with the frequency-dependent solu-

tion has relied on this model.

The potential Green’s function for the single-layer

problem can be readily obtained as [6]

1
g(b, @)=—

[
~log(l/R)

2m~ 6,

cos{n’z(@-@’)}

1
(Al)

‘2~E1 nz{l+c,coth(m log@’R))} “

The charge distribution is approximated by a set of pulse

basis f!mctions with a subsegment width of D and the

even/odd mode condition is imposed on the problem.

When the Galerkin method is applied, we obtain the

system of equations as [V.] = [Z~~,][c~,]. Since the potential

on the strip is constant, V. =1, the impedance matrix

element is derived in the form

r
8

znnt ’—

I

p~log(l/R)
rr.soD ~

with

[
1: even mode

p = O: odd mode.

Here the even mode corresponds to the upper and the odd

mode to the lower case. The closed-foim formulation is

obtained by observing that coth (m log (l/R)) -1 as R A 1.
The same technique is also applied to the frequency-

dependent model. We have determined that when R is
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close to unity, the closed-form formulation requires a

relatively large number of correction terms. This is also

true for the frequency-dependent model since the func-

tional behavior for large order is expected to be the same

as that for the quasi-static case. The convergence rate of

the above summation relies on the value of D. When D is

small, it can be observed that the convergence rate is very

slow, and for the extreme case of D = O the series diverges.

This is the case of singular solution, when the source is an

impulse source and the system function is white noise.
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